МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ГАЗОДИНАМІЧНИХ ХАРАКТЕРИСТИК ЗАКРУЧЕНОГО ПОТОКУ В ПЕЧІ ДЛЯ ТВЕРДИХ ПОБУТОВИХ ВІДХОДІВ

Автор(и)

DOI:

https://doi.org/10.31319/2519-2884.47.2025.14

Ключові слова:

барабанна обертова піч, швидкість потоку, математична модель

Анотація

У роботі розроблено математичну модель руху газів у обертовій печі із завихрювачем на вході для спалювання твердих побутових відходів. Розв'язок рівнянь математичної моделі отримано чисельним методом з використанням алгоритму SIMPLE. В результаті отримані профілі осьової, радіальної та обертальної швидкості газу. Показано, що закручування потоку на вході суттєво впливає на профіль осьової, радіальної та обертальної швидкостей на початковій ділянці печі в зоні догоряння. Визначено зони мінімуму і максимуму швидкостей газу та ділянки її стабілізації.

Посилання

United Nations Environment Programme, International Solid Waste Association. (2024). Global Waste Management Outlook 2024. Nairobi: UNEP. DOI: https://doi.org/10.18356/9789210027596.

Eurostat. (2025). Municipal waste statistics. Luxembourg: European Commission. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics.

Li J. (2024). A review of the physical and chemical characteristics of municipal solid waste incineration fly ash in China. Energies, 17(2), 491. DOI: https://doi.org/10.3390/en17020491.

European Environment Agency. (2024). Recycling in Europe: Trends and prospects 2025. Copenhagen: EEA. URL: https://www.eea.europa.eu/en/analysis/indicators/waste-recycling.

Ecoprog GmbH. (2024). Waste to Energy 2024/2025 (17th ed.). Cologne: ecoprog GmbH. URL: https://www.ecoprog.com/waste-to-energy-report.

Zhevzyk, O., Potapchuk, I., Bosyi, D., Castro-Santos, L., Reznyk, D. A., & Holenko, D. (2025, June). Thermochemical Analysis of Maximizing Hydrogen Production from Biogas Through Thermal Decomposition. In 2025 International Conference on Clean Electrical Power (ICCEP) (pp. 741-743). IEEE. DOI: 10.1109/ICCEP65222.2025.11143729.

Financial Times. (2025, September 14). China running out of rubbish to burn as waste power goes into overdrive.URL: https://www.ft.com/content/28d8d39e.

Sun, H., Zhang, Y., Liu, J. (2024). An integrated assessment of municipal solid waste incineration in China: environmental and economic perspectives. Sustainability, 16 (7), 3254. DOI: https://doi.org/10.3390/su16073254.

Yang, S., Kong, Q., Zeng, D., Wu, S, Gong, F, Xiao, R. (2022). Simulation research of a counter-flow rotary kiln hazardous waste incineration system. Int J Coal Sci Technol 9, 60. https://doi.org/10.1007/s40789-022-00523-y.

Pichler, M, Haddadi, B, Jordan, C, Norouzi, H, Harasek, M. (2021). Dataset for the simulated biomass pyrolysis in rotary kilns with varying particle residence time distributions. Data Brief. Nov 23;39:107603. doi: 10.1016/j.dib.2021.107603. PMID: 34877378; PMCID: PMC8633881.

Cecílio, D.M., Mateus, M., Ferreiro, A.I. (2023). Industrial Rotary Kiln Burner Performance with 3D CFD Modeling. Fuels, 4, 454-468. https://doi.org/10.3390/fuels4040028.

Khodaei, H., Álvarez-Bermúdez, C., Chapela, S., Olson, C., MacKenzie, M.D., Gómez, M.A., Porteiro, J. (2024). Eulerian CFD simulation of biomass thermal conversion in an indirect slow pyrolysis rotary kiln unit to produce biochar from recycled waste wood, Energy, Volume 288, 129895, https://doi.org/10.1016/j.energy.2023.129895.

Wang, M., Jia, T., Song, X., Yin, L., Chen, D., Qian, K. (2024). CFD–DEM Simulation of Heat Transfer and Reaction Characteristics of Pyrolysis Process of MSW Heated by High-Temperature Flue Gas. Processes, 12, 390. https://doi.org/10.3390/pr12020390.

Loitsyanskii, L.G. (1966). Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Vol. 6.

Patankar S. Numerical heat transfer and fluid flow. New York: Hemisohere Publishing Corporation, 1980. p. 197.

Коваль В.П. Совершенствование энергетических аппаратов с вихревой камерой. Дисс. докт. техн. наук, – Днепропетровск, 1989. 440 с.

United Nations Environment Programme, International Solid Waste Association. (2024). Global Waste Management Outlook 2024. Nairobi: UNEP. DOI: https://doi.org/10.18356/9789210027596.

Eurostat. (2025). Municipal waste statistics. Luxembourg: European Commission. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics.

Li J. (2024). A review of the physical and chemical characteristics of municipal solid waste incineration fly ash in China. Energies, 17(2), 491. DOI: https://doi.org/10.3390/en17020491.

European Environment Agency. (2024). Recycling in Europe: Trends and prospects 2025. Copenhagen: EEA. URL: https://www.eea.europa.eu/en/analysis/indicators/waste-recycling.

Ecoprog GmbH. (2024). Waste to Energy 2024/2025 (17th ed.). Cologne: ecoprog GmbH. URL: https://www.ecoprog.com/waste-to-energy-report.

Zhevzyk, O., Potapchuk, I., Bosyi, D., Castro-Santos, L., Reznyk, D. A., & Holenko, D. (2025, June). Thermochemical Analysis of Maximizing Hydrogen Production from Biogas Through Thermal Decomposition. In 2025 International Conference on Clean Electrical Power (ICCEP) (pp. 741-743). IEEE. DOI: 10.1109/ICCEP65222.2025.11143729.

Financial Times. (2025, September 14). China running out of rubbish to burn as waste power goes into overdrive.URL: https://www.ft.com/content/28d8d39e.

Sun, H., Zhang, Y., & Liu, J. (2024). An integrated assessment of municipal solid waste incineration in China: environmental and economic perspectives. Sustainability, 16 (7), 3254. DOI: https://doi.org/10.3390/su16073254.

Yang, S., Kong, Q., Zeng, D., Wu, S, Gong, F, & Xiao, R. (2022). Simulation research of a counter-flow rotary kiln hazardous waste incineration system. Int J Coal Sci Technol 9, 60. https://doi.org/10.1007/s40789-022-00523-y.

Pichler, M., Haddadi, B., Jordan, C., Norouzi, & H., Harasek, M. (2021). Dataset for the simulated biomass pyrolysis in rotary kilns with varying particle residence time distributions. Data Brief. Nov 23;39:107603. doi: 10.1016/j.dib.2021.107603. PMID: 34877378; PMCID: PMC8633881.

Cecílio, D.M., Mateus, M., & Ferreiro, A.I. (2023). Industrial Rotary Kiln Burner Performance with 3D CFD Modeling. Fuels, 4, 454-468. https://doi.org/10.3390/fuels4040028.

Khodaei, H., Álvarez-Bermúdez, C., Chapela, S., Olson, C., MacKenzie, M.D., Gómez, M.A., et al. (2024). Eulerian CFD simulation of biomass thermal conversion in an indirect slow pyrolysis rotary kiln unit to produce biochar from recycled waste wood, Energy. (Vols 288), (pp. 129895). DOI: https://doi.org/10.1016/j.energy.2023.129895.

Wang, M., Jia, T., Song, X., Yin, L., Chen, D., & Qian, K. (2024). CFD–DEM Simulation of Heat Transfer and Reaction Characteristics of Pyrolysis Process of MSW Heated by High-Temperature Flue Gas. Processes. 12, 390. https://doi.org/10.3390/pr12020390.

Loitsyanskii, L.G. (1966). Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics. (Vols 6).

Patankar S. (1980). Numerical heat transfer and fluid flow. New York: Hemisohere Publishing Corporation.

Koval V.P. (1989). Sovershenstvovanye enerhetycheskykh apparatov s vykhrevoi kameroi. [Improvement of energy devices with a vortex chamber]. Doctor's thesis. Dnipropetrovsk [in Ukrainian].

##submission.downloads##

Опубліковано

2025-12-10

Номер

Розділ

Теплоенергетика