ГРАФІТОПОДІБНИЙ НІТРИД ВУГЛЕЦЮ ЯК ЕЛЕМЕНТ СТРАТЕГІЇ ФОТОКАТАЛІТИЧНОЇ АКТИВАЦІЇ КАЛІЮ ПЕРОКСОМОНОСУЛЬФАТУ ДЛЯ ОКИСНЮВАЛЬНОЇ ДЕГРАДАЦІЇ БАРВНИКА DIRECT YELLOW 4
DOI:
https://doi.org/10.31319/2519-2884.47.2025.19Ключові слова:
графітоподібний нітрид вуглецю, фотокаталітична активація, калію пероксомоносульфат, окиснювальна деградація, барвник Direct Yellow 4Анотація
Розглянуто негативний вплив акумуляції барвників у водних середовищах на гідробіонтів та організм людини, окисні властивості калію пероксомоносульфату, структуру графітоподібного нітриду вуглецю (g-C3N4) та його основні фотокаталітичні застосування. Методом термічної полімеризації меламіну впродовж 2 год. за температури 550 °C було синтезовано g-C3N4. Особливості структури g-C3N4 охарактеризовано методами X-променевої дифракції та ІЧ-спектроскопії з Фур’є-перетворенням. Встановлено, що морфологія поверхні g-C3N4 представлена зморшками, порами і трубчастими структурами, які утворюються внаслідок виділення аміаку під час поліконденсації меламіну. Синтезований g-C3N4 використано як важливий елемент у стратегії фотокаталітичної активації оксону (2KHSO5·KHSO4·K2SO4). Виявлено, що максимальної ефективності деградації барвника Direct Yellow 4 (ступінь деградації становив 99,7 %) досягнули впродовж 1800 с в окиснювальній фотокаталітичній системі “УФ/g-C3N4/оксон”.
Посилання
Ghanbari F., Moradi M. Application of peroxymonosulfate and its activation methods for degrada-tion of environmental organic pollutants: review. Chemical Engineering Journal. 2017. Vol. 310. P. 41—62. doi.org/10.1016/j.cej.2016.10.064
Li C., Shen M., Li X., Fu Y., Dong Y., Lyu B., Yuan J. Chemical—mechanical polishing of 4H-SiC using multi-catalyst synergistic activation of potassium peroxymonosulfate. Processes. 2025. Vol. 13. No. 4. 1094. doi.org/10.3390/pr13041094
Guo J., Lei M., Yan L., Huang J., Liu C., Ye L., Li B., Xu X., Li Y. Sustainable water decontam-ination: advanced high‐valent iron active species‐driven peroxymonosulfate activation for global challenges. CleanMat. 2025. Vol. 2. No. 2. P. 88—103. doi.org/10.1002/clem.70001
Laftani Y., Chatib B., Hachkar M., Boussaoud A. Exploring the reactivity of hydroxyl and sulfate radicals in enhancing water decontamination processes. International Journal of Environmental Science and Technology. 2025. Vol. 22. P. 14719—14728. doi.org/10.1007/s13762-025-06647-3
Honarmandrad Z., Sun X., Wang Z., Naushad M., Boczkaj G. Activated persulfate and peroxy-monosulfate based advanced oxidation processes (AOPs) for antibiotics degradation — a review. Water Resources and Industry. 2023. Vol. 29. 100194. doi.org/10.1016/j.wri.2022.100194
Tan J., Li Z., Li J., Wu J., Yao X., Zhang T. Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: a review on materials design and mecha-nisms. Chemosphere. 2021. Vol. 262. 127675. doi.org/10.1016/j.chemosphere.2020.127675
Alaghmandfard A., Ghandi K. A comprehensive review of graphitic carbon nitride (g-C3N4)—metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials. 2022. Vol. 12. No. 2. 294. doi.org/10.3390/nano12020294
Yan Y., Meng Q., Tian L., Cai Y., Zhang Y., Chen Y. Engineering of g-C3N4 for photocatalytic hydrogen production: a review. International Journal of Molecular Sciences. 2024. Vol. 25. No. 16. 8842. doi.org/10.3390/ijms25168842
Chandrappa S., Galbao S.J., Furube A., Murthy D.H.K. Extending the optical absorption limit of graphitic carbon nitride photocatalysts: a review. ACS Applied Nano Materials. 2023. Vol. 6. No. 21. P. 19551—19572. doi.org/10.1021/acsanm.3c04740
Pattanayak D.S., Pal D., Mishra J., Thakur C. Noble metal—free doped graphitic carbon ni-tride (g‑C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future direc-tions. Environmental Science and Pollution Research. 2023. Vol. 30. P. 25546—25558. doi.org/10.1007/s11356-022-20170-9
Pei J., Li H., Zhuang S., Zhang D., Yu D. Recent advances in g-C3N4 photocatalysts: a review of reaction parameters, structure design and exfoliation methods. Catalysts. 2023. Vol. 13. No. 11. 1402. doi.org/10.3390/catal13111402
Salunkhe T.T., Gurugubelli T.R., Viswanadham B., Babu B., Sreekanth T.V.M., Yoo K. Ex-ploring photocatalytic and photoelectrochemical applications of g-C3N4/metal sulfide quantum dots nanocomposites: a review of recent trends and innovations. Journal of Chemistry. 2025. Vol. 2025. 8849437. doi.org/10.1155/joch/8849437
Sudhaik A., Raizada P., Shandilya P., Jeong D.-Y., Lim J.-H., Singh P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. Journal of Industrial and Engineering Chemistry. 2018. Vol. 67. P. 28—51. doi.org/10.1016/j.jiec.2018.07.007
Ajiboye T.O., Kuvarega A.T., Onwudiwe D.C. Graphitic carbon nitride-based catalysts and their applications: a review. Nano-Structures & Nano-Objects. 2020. Vol. 24. 100577. doi.org/10.1016/j.nanoso.2020.100577
Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T., Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Applied Surface Science. 2015. Vol. 358. P. 278—286. doi.org/10.1016/j.apsusc.2015.08.097
Fang H.-B., Luo Y., Zheng Y.-Z., Ma W., Tao X. Facile large-scale synthesis of urea-derived porous graphitic carbon nitride with extraordinary visible-light spectrum photodegradation. Indus-trial & Engineering Chemistry Research. 2016. Vol. 55. No. 16. P. 4506—4514. doi.org/10.1021/acs.iecr.6b00041
Dong F., Wu L., Sun Y., Fu M., Wu Z., Lee S.C. Efficient synthesis of polymeric g-C3N4 lay-ered materials as novel efficient visible light driven photocatalyst. Journal of Materials Chemis-try. 2011. Vol. 21. No. 39. P. 15171—15174. doi.org/10.1039/C1JM12844B
Thomas A., Fischer A., Goettmann F., Antonietti M., Mueller J.O., Schloegl R., Carlsson J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry. 2008. Vol. 18. No. 41. P. 4893—4908. doi.org/10.1039/B800274F
Li Y.B., Zhang H.M., Liu P., Wang D., Li Y., Zhao H.J. Cross-linked g-C3N4/rGO nanocom-posites with tunable band structure and enhanced visible light photocatalytic activity. Small. 2013. Vol. 9. No. 19. P. 3336—3344. doi.org/10.1002/smll.201203135
Dong F., Wang Z., Sun Y., Ho W.-K., Zhang H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Jour-nal of Colloid and Interface Science. 2013. Vol. 401. P. 70—79. doi.org/10.1016/j.jcis.2013.03.034
Bojdys M.J., Muller J.O., Antonietti M., Thomas A. Ionothermal synthesis of crystalline, con-densed, graphitic carbon nitride. Chemistry—A European Journal. 2008. Vol. 14. No. 27. P. 8177—8182. doi.org/10.1002/chem.200800190
Xu M., Han L., Dong S.J. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Applied Materials & Inter-faces. 2013. Vol. 5. No. 23. P. 12533—12540. doi.org/10.1021/am4038307
Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chemical Engineering Journal. Vol. 310. P. 41—62. doi.org/10.1016/j.cej.2016.10.064
Li, C., Shen, M., Li, X., Fu, Y., Dong, Y., Lyu, B., & Yuan, J. (2025). Chemical—mechanical polishing of 4H-SiC using multi-catalyst synergistic activation of potassium peroxymonosulfate. Processes. Vol. 13. No. 4. 1094. doi.org/10.3390/pr13041094
Guo, J., Lei, M., Yan, L., Huang, J., Liu, C., Ye, L., Li, B., Xu, X., & Li, Y. (2025). Sustainable water decontamination: advanced high‐valent iron active species‐driven peroxymonosulfate acti-vation for global challenges. CleanMat. Vol. 2. No. 2. P. 88—103. doi.org/10.1002/clem.70001
Laftani, Y., Chatib, B., Hachkar, M., & Boussaoud, A. (2025). Exploring the reactivity of hy-droxyl and sulfate radicals in enhancing water decontamination processes. International Journal of Environmental Science and Technology. Vol. 22. P. 14719—14728. doi.org/10.1007/s13762-025-06647-3
Honarmandrad, Z., Sun, X., Wang, Z., Naushad, M., & Boczkaj, G. (2023). Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation — a review. Water Resources and Industry. Vol. 29. 100194. doi.org/10.1016/j.wri.2022.100194
Tan, J., Li, Z., Li, J., Wu, J., Yao, X., & Zhang, T. (2021). Graphitic carbon nitride-based materi-als in activating persulfate for aqueous organic pollutants degradation: a review on materials de-sign and mechanisms. Chemosphere. Vol. 262. 127675. doi.org/10.1016/j.chemosphere.2020.127675
Alaghmandfard, A., & Ghandi, K. (2022). A comprehensive review of graphitic carbon nitride (g-C3N4)—metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nano-materials. Vol. 12. No. 2. 294. doi.org/10.3390/nano12020294
Yan, Y., Meng, Q., Tian, L., Cai, Y., Zhang, Y., & Chen, Y. (2024). Engineering of g-C3N4 for photocatalytic hydrogen production: a review. International Journal of Molecular Sciences. Vol. 25. No. 16. 8842. doi.org/10.3390/ijms25168842
Chandrappa, S., Galbao, S.J., Furube, A., & Murthy, D.H.K. (2023). Extending the optical ab-sorption limit of graphitic carbon nitride photocatalysts: a review. ACS Applied Nano Materials. Vol. 6. No. 21. P. 19551—19572. doi.org/10.1021/acsanm.3c04740
Pattanayak, D.S., Pal, D., Mishra, J., & Thakur, C. (2023). Noble metal—free doped graphitic carbon nitride (g‑C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future directions. Environmental Science and Pollution Research. Vol. 30. P. 25546—25558. doi.org/10.1007/s11356-022-20170-9
Pei, J., Li, H., Zhuang, S., Zhang, D., & Yu, D. (2023). Recent advances in g-C3N4 photocata-lysts: a review of reaction parameters, structure design and exfoliation methods. Catalysts. Vol. 13. No. 11. 1402. doi.org/10.3390/catal13111402
Salunkhe, T.T., Gurugubelli, T.R., Viswanadham, B., Babu, B., Sreekanth, T.V.M., & Yoo, K. (2025). Exploring photocatalytic and photoelectrochemical applications of g-C3N4/metal sulfide quantum dots nanocomposites: a review of recent trends and innovations. Journal of Chemistry. Vol. 2025. 8849437. doi.org/10.1155/joch/8849437
Sudhaik, A., Raizada, P., Shandilya, P., Jeong, D.-Y., Lim, J.-H., & Singh, P. (2018). Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. Journal of Industrial and Engineering Chemistry. Vol. 67. P. 28—51. doi.org/10.1016/j.jiec.2018.07.007
Ajiboye, T.O., Kuvarega, A.T., & Onwudiwe, D.C. (2020). Graphitic carbon nitride-based cata-lysts and their applications: a review. Nano-Structures & Nano-Objects. Vol. 24. 100577. doi.org/10.1016/j.nanoso.2020.100577
Papailias, I., Giannakopoulou, T., Todorova, N., Demotikali, D., Vaimakis, T., & Trapalis, C. (2015). Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Applied Surface Science. Vol. 358. P. 278—286. doi.org/10.1016/j.apsusc.2015.08.097
Fang, H.-B., Luo, Y., Zheng, Y.-Z., Ma, W., & Tao, X. (2016). Facile large-scale synthesis of urea-derived porous graphitic carbon nitride with extraordinary visible-light spectrum photodeg-radation. Industrial & Engineering Chemistry Research. Vol. 55. No. 16. P. 4506—4514. doi.org/10.1021/acs.iecr.6b00041
Dong, F., Wu, L., Sun, Y., Fu, M., Wu, Z., & Lee, S.C. (2011). Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalyst. Journal of Materi-als Chemistry. Vol. 21. No. 39. P. 15171—15174. doi.org/10.1039/C1JM12844B
Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Mueller, J.O., Schloegl, R., & Carls-son, J.M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry. Vol. 18. No. 41. P. 4893—4908. doi.org/10.1039/B800274F
Li, Y.B., Zhang, H.M., Liu, P., Wang, D., Li, Y., & Zhao, H.J. (2013). Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small. Vol. 9. No. 19. P. 3336—3344. doi.org/10.1002/smll.201203135
Dong, F., Wang, Z., Sun, Y., Ho, W.-K., & Zhang, H. (2013). Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of Colloid and Interface Science. Vol. 401. P. 70—79. doi.org/10.1016/j.jcis.2013.03.034
Bojdys, M.J., Muller, J.O., Antonietti, M., & Thomas, A. (2008). Ionothermal synthesis of crys-talline, condensed, graphitic carbon nitride. Chemistry—A European Journal. Vol. 14. No. 27. P. 8177—8182. doi.org/10.1002/chem.200800190
Xu, M., Han, L., & Dong, S.J. (2013). Facile fabrication of highly efficient g-C3N4/Ag2O heter-ostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Applied Ma-terials & Interfaces. Vol. 5. No. 23. P. 12533—12540. doi.org/10.1021/am4038307