ДОСЛІДЖЕННЯ ТЕРМОДИНАМІЧНИХ ПРОЦЕСІВ УТВОРЕННЯ ГІДРОГЕН ПОЛІОКСИДІВ У ВОДНИХ РОЗЧИНАХ ПРИ ДІЇ НЕРІВНОВАЖНОЇ НИЗЬКОТЕМПЕРАТУРНОЇ ПЛАЗМИ
DOI:
https://doi.org/10.31319/2519-2884.46.2025.18Ключові слова:
гідроген поліоксиди, нерівноважна низькотемпературна плазма, термодинамічні процеси, вільна енергія, анод, поляризація, гідрогенАнотація
Розглянуто електрохімічні процеси, які відбуваються на нерозчинених анодах високої поляризації, ймовірність різних маршрутів при утворенні гідроген пероксиду та його полімерних сполук. Проведено дослідження термодинамічних процесів утворення поліоксидів у водних розчинах при впливі нерівноважної низькотемпературної плазми, виявлено особливості одержання гідроген поліоксидів. Термодинамічні розрахунки процесів отримання гідроген поліоксидів з Н2О показали, що процес супроводжується виділенням тепла, значення зміни вільної енергії Гіббса негативні, що вказує на самовільний характер процесу утворення гідроген поліоксидів.
Посилання
Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis A: General. 2008. Vol. 350. №. 2. P. 133–149.
Hwang, S. Advanced Oxidation / Lee S. (ed.). Encyclopedia of chemical processing. Taylor & Francis US, 2006. 3338 p.
Rostam A.B., Taghizadeh M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. Journal of Environmental Chemical Engineering. 2020. Vol. 8. №. 6. P. 104566.
Jung Y.S. et al. Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology. 2009. Vol. 30. №. 2. P. 183–190.
Krishna M.V. B. et al. A combined treatment approach using Fenton’s reagent and zero valent iron for the removal of arsenic from drinking water. Journal of Hazardous Materials. 2001. Vol. 84. №. 2–3. P. 229–240.
Bertanza G., Collivignarelli C., Pedrazzani R. The role of chemical oxidation in combined chem-ical-physical and biological processes: experiences of industrial wastewater treatment. Water Sci-ence and Technology. 2001. Vol. 44. №. 5. P. 109–116.
Zhou J. et al. Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H 2/O 2 non-equilibrium plasma. Chemical Communications. 2005. №. 12. P. 1631–1633.
Yi Y. et al. A review on research progress in the direct synthesis of hydrogen peroxide from hy-drogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catalysis Science & Technology. 2016. Vol. 6. №. 6. P. 1593–1610.
Holzer F., Locke B. R. Influence of high voltage needle electrode material on hydrogen peroxide formation and electrode erosion in a hybrid gas–liquid series electrical discharge reactor. Plasma Chemistry and Plasma Processing. 2008. Vol. 28. P. 1–13.
Vanraes P., Bogaerts A. Plasma physics of liquids – а focused review. Applied Physics Reviews. 2018. Vol. 5. №. 3.
Kublanovsky V., Kravchenko A. Water treatment by low temperature glow discharge electroly-sis. International Conference “MICROPOL & ECOHAZARD”. 17-20 June 2007. Frankfurt on Main, Germany 2007. Vol. 17. P. 20.
Lide D. R. (ed.). CRC handbook of chemistry and physics. CRC press, 2004.
Fischer H. et al. Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. Atmospheric Chemistry and Physics. 2019. Vol. 19. №. 18. P. 11953–11968.
Kirkpatrick M.J., Locke B.R. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Industrial & engineering chemistry research. 2005. Vol. 44. №. 12. P. 4243–4248.
Ognier S. et al. Analysis of mechanisms at the plasma–liquid interface in a gas–liquid discharge reactor used for treatment of polluted water. Plasma Chemistry and Plasma Processing. 2009. Vol. 29. P. 261–273.
Flowers B.A. et al. Benchmark thermochemistry of the hydroperoxyl radical. The Journal of Physical Chemistry A. 2004. Vol. 108. №. 15. P. 3195–3199.
Martins-Costa M., Anglada J. M., Ruiz-López M. F. Structure, stability, and dynamics of hydro-gen polyoxides. International Journal of Quantum Chemistry. 2011. Vol. 111. №. 7–8. P. 1543–1554.
Samanta, C. (2008). Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis A: General, 350(2), 133–149. DOI 10.1016/j.apcata.2008.07.043
Hwang, S. Advanced Oxidation. In Lee, S. (Ed.). (2006). Encyclopedia of chemical pro-cessing. Taylor & Francis US.
Rostam, A.B., & Taghizadeh, M. (2020). Advanced oxidation processes integrated by mem-brane reactors and bioreactors for various wastewater treatments: A critical review. Journal of Environmental Chemical Engineering, 8(6), 104566. DOI 10.1016/j.jece.2020.104566
Jung, Y.S., Lim, W.T., Park, J.Y., & Kim, Y.H. (2009). Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology, 30(2), 183–190. DOI 10.1080/09593330802468848
Krishna, M. B., Chandrasekaran, K., Karunasagar, D., & Arunachalam, J. (2001). A combined treatment approach using Fenton’s reagent and zero valent iron for the removal of arsenic from drinking water. Journal of Hazardous Materials, 84(2–3), 229–240. DOI 10.1016/S0304-3894(01)00205-9
Bertanza, G., Collivignarelli, C., & Pedrazzani, R. (2001). The role of chemical oxidation in combined chemical-physical and biological processes: experiences of industrial wastewater treatment. Water Science and Technology, 44(5), 109–116. DOI 10.2166/wst.2001.0263
Zhou, J., Guo, H., Wang, X., Guo, M., Zhao, J., Chen, L., & Gong, W. (2005). Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H 2/O 2 non-equilibrium plasma. Chemical Communications, (12), 1631–1633. DOI 10.1039/B416835F
Yi, Y., Wang, L., Li, G., & Guo, H. (2016). A review on research progress in the direct syn-thesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catalysis Science & Technology, 6(6), 1593–1610. DOI 10.1039/C5CY01567G
Holzer, F., & Locke, B. R. (2008). Influence of high voltage needle electrode material on hy-drogen peroxide formation and electrode erosion in a hybrid gas–liquid series electrical dis-charge reactor. Plasma Chemistry and Plasma Processing, 28, 1–13. DOI 10.1007/s11090-007-9107-x
Vanraes, P., & Bogaerts, A. (2018). Plasma physics of liquids – a focused review. Applied Physics Reviews, 5(3). DOI 10.1063/1.5020511
Kublanovsky, V., & Kravchenko, A. (2007). Water treatment by low temperature glow dis-charge electrolysis. In International Conference “MICROPOL & ECOHAZARD”, 17, 20.
Lide, D.R. (Ed.). (2004). CRC handbook of chemistry and physics. CRC press.
Fischer, H., Axinte, R., Bozem, H., Crowley, J.N., Ernest, C., Gilge, S., & Lelieveld, J. (2019). Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. Atmospheric Chemistry and Physics, 19(18), 11953–11968. DOI 10.5194/acp-19-11953-2019
Kirkpatrick, M.J., & Locke, B.R. (2005). Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Industrial & engineering chemistry re-search, 44(12), 4243–4248. DOI 10.1021/ie048807d
Ognier, S., Iya-Sou, D., Fourmond, C., & Cavadias, S. (2009). Analysis of mechanisms at the plasma–liquid interface in a gas–liquid discharge reactor used for treatment of polluted wa-ter. Plasma Chemistry and Plasma Processing, 29, 261-273. DOI 10.1007/s11090-009-9179-x
Flowers, B.A., Szalay, P.G., Stanton, J.F., Kállay, M., Gauss, J., & Császár, A. G. (2004). Benchmark thermochemistry of the hydroperoxyl radical. The Journal of Physical Chemistry A, 108(15), 3195–3199. DOI 10.1021/jp037347j
Martins-Costa, M., Anglada, J.M., & Ruiz-López, M. F. (2011). Structure, stability, and dy-namics of hydrogen polyoxides. International Journal of Quantum Chemistry, 111(7–8), 1543–1554. DOI 10.1002/qua.22695