ЙМОВІРНИЙ МЕХАНІЗМ СОНОКАТАЛІТИЧНОЇ АКТИВАЦІЇ КАЛІЮ ПЕРОКСОДИСУЛЬФАТУ ДЛЯ ДЕГРАДАЦІЇ БАРВНИКА САФРАНІНУ Т

Автор(и)

  • Ю.В. Сухацький Національний університет „Львівська політехніка”, м. Львів, Україна https://orcid.org/0000-0002-9453-3144
  • Т.С. Дмитренко Національний університет „Львівська політехніка”, м. Львів, Україна
  • М.А. Созанський Національний університет „Львівська політехніка”, м. Львів, Україна https://orcid.org/0000-0003-1057-9928
  • З.О. Знак Національний університет „Львівська політехніка”, м. Львів, Україна https://orcid.org/0000-0002-3871-4063

DOI:

https://doi.org/10.31319/2519-2884.45.2024.19

Ключові слова:

сонокаталітична активація, калію пероксодисульфат, наночастинки шпінелі, барвник, синглетний кисень

Анотація

і методи активації персульфатів (пероксомоносульфатів і пероксодисульфатів). Запропоновано здійснювати деградацію сафраніну Т із використанням калію пероксодисульфату (K2S2O8), активованого в ультразвуковому кавітаційному полі та наночастинками шпінелі MnFe2O4 (сонокаталітична активація). Встановлено, що зі збільшенням температури реакційного середовища від 393 до 433 К ступінь деградації барвника зростав від 77,7 до 98,3 %, що свідчило про вагому роль температури як третього фактора активації K2S2O8. З’ясовано, що окиснювальна деградація сафраніну Т найбільш достовірно описується кінетичним рівнянням реакції другого порядку. Методом “спінових пасток” ідентифіковано домінантну активну форму Кисню — синглетний кисень.

Посилання

Hassan A.F., Alshandoudi L.M., Awad A.M., Mustafa A.A., Esmail G. Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo Fenton degradation of Safranin O: kinetic and thermodynamic studies. Macromolecular Research. 2023. Vol. 31. P. 677—697. doi.org/10.1007/s13233-023-00147-4

Salem M.A., Salem I.A., Zaki H.M., El-Sawy A.M. Elimination of Safranin-O and a binary mixture of Safranin-O and methylene blue from water by adsorption on magnetite/Ag nanocomposite. Egyptian Journal of Petroleum. 2022. Vol. 31. No. 2. P. 39—49. doi.org/10.1016/j.ejpe.2022.05.002

Bendjama M., Hamdaoui O., Ferkous H., Alghyamah A. Degradation of safranin O in water by UV/TiO2/IO4- process: Effect of operating conditions and mineralization. Catalysts. 2022. Vol. 12(11). 1460. doi.org/10.3390/catal12111460

Jadhav G.K.P., Malusare O.S.A., Ahiwale R.K.P., Patil P., Grouli A., Berrada M., Pandit V.R.U. Safranin dye degradation by using Fe2O3-SnO2 nanocomposites under natural sunlight. Biopolymer Applications Journal. 2022. Vol. 1. No. 2. P. 19—23.

Ikhlaq A., Anwar H.Z., Javed F., Gull S. Degradation of safranin by heterogeneous Fenton processes using peanut shell ash based catalyst. Water Science & Technology. 2019. Vol. 79(7). P. 1367—1375. doi.org/10.2166/wst.2019.132

Guo S., Zhang L., Chen M., Ahmad F., Fida H., Zhang H. Heterogeneous activation of peroxymonosulfate by a spinel CoAl2O4 catalyst for the degradation of organic pollutants. Catalysts. 2022. Vol. 12(8). 847. doi.org/10.3390/catal12080847

Dharini M., Jaspin S., Mahendran R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chemistry. 2023. Vol. 405. Part A. 134746. doi.org/10.1016/j.foodchem.2022.134746

Guo S., Wang H., Yang W., Fida H., You L., Zhou K. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Applied Catalysis B: Environmental. 2020. Vol. 262. 118250. doi.org/10.1016/j.apcatb.2019.118250

Xie H., Xu V. Enhanced activation of persulfate by meso-CoFe2O4/SiO2 with ultrasonic treatment for degradation of chlorpyrifos. ACS Omega. 2019. Vol. 4(17). P. 17177—17185. doi.org/10.1021/acsomega.9b01626

Guo Z., Wang X., Yang F., Liu Z. Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance. Journal of Alloys and Compounds. 2022. Vol. 895. Part 2. 162614. doi.org/10.1016/j.jallcom.2021.162614

Li J., Shi Q., Zhao R., Liu Y., Liu P., Liu L. Facile synthesis of CoMn2O4 spinel catalyst as peroxymonosulfate activator for efficient rhodamine B degradation. Materials Letters. 2023. Vol. 351. 135108. doi.org/10.1016/j.matlet.2023.135108

Liu F., Li W., Wu D., Tian T., Wu J.-F., Dong Z.-M., Zhao G.-C. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: A singlet oxygen-dominated oxidation process. Journal of Colloid and Interface Science. 2020. Vol. 572. P. 318—327. doi.org/10.1016/j.jcis.2020.03.116

Wang B., Li Q., Lv Y., Fu H., Liu D., Feng Y., Xie H., Qu H. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chemical Engineering Journal. 2021. Vol. 416. 129162. doi.org/10.1016/j.cej.2021.129162

Zheng H., Zhang Y., Lu M., Xie H., Ye J., Wang H., Yang M., Li G. Zero-valent iron-loaded Ti3C2-MXene activated by persulfate for the degradation of tetracycline hydrochloride: Efficiency and mechanism. Journal of Environmental Chemical Engineering. 2024. Vol. 12. No. 4. 113265. doi.org/10.1016/j.jece.2024.113265

Chen X., Hu C., Hong F., Fang Y., Yuan X., Tian H., Huang Y. Activation of persulfate with hydrodynamic cavitation in the removal of atrazine: Regulating the concentration of •OH and •SO4- and the degradation mechanism. Journal of Water Process Engineering. 2024. Vol. 65. 105828. doi.org/10.1016/j.jwpe.2024.105828

Sukhatskiy Y., Dmytrenko T., Shepida M., Sozanskyi M., Znak Z. Degradation of diazine dye safranin T using potassium persulfate activated by ultrasonic treatment and MnFe2O4 spinel nanoparticles. Voprosy khimii i khimicheskoi tekhnologii. 2024. No. 1(152). P. 99—108. doi.org/10.32434/0321-4095-2024-152-1-99-108

Shao Z., Xiang K., Liu S., Hong F., Gao Y., Lei E., Jia J., Huang Y. Unveiling the roles of turbulence characteristics on the degradation of methylene blue by the activation of H2O2 through vortex-based hydrodynamic cavitation under neutral condition. Journal of Environmental Chemical Engineering. 2024. Vol. 12. No. 5. 113916. doi.org/10.1016/j.jece.2024.113916

Pourzamani H., Jafari E., Rozveh M.S., Mohammadi H., Rostami M., Mengelizadeh N. Degradation of ciprofloxacin in aqueous solution by activating the peroxymonosulfate using graphene based on CoFe2O4. Desalination and Water Treatment. 2019. Vol. 167. P. 156—169. doi.org/10.5004/dwt.2019.24593

Shu Y., Zhang P., Zhong Y., Xu X., Ren G., Wang W., Xiang H., Zhang Z., Yang X., Wang X. Heterogeneous activation of persulfate by ZnCoxFe2-xO4 loaded on rice hull carbon for degrading bisphenol A. RSC Advances. 2020. Vol. 10. 44551. doi.org/10.1039/d0ra08852h

Xu J., Cheng H., Zhang H., Sun C., Tian H., Yang J., Ding Y., Lin X., Wang P., Huang C. Visible light irradiation enhanced sulfidated zero-valent iron/peroxymonosulfate process for organic pollutant degradation. Environmental Research. 2024. Vol. 257. 119292. doi.org/10.1016/j.envres.2024.119292

Hassan, A.F., Alshandoudi, L.M., Awad, A.M., Mustafa, A.A., & Esmail, G. (2023). Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo Fenton degradation of Safranin O: kinetic and thermodynamic studies. Macromolecular Research. Vol. 31. P. 677—697. doi.org/10.1007/s13233-023-00147-4

Salem, M.A., Salem, I.A., Zaki, H.M., & El-Sawy, A.M. (2022). Elimination of Safranin-O and a binary mixture of Safranin-O and methylene blue from water by adsorption on magnetite/Ag nanocomposite. Egyptian Journal of Petroleum. Vol. 31. No. 2. P. 39—49. doi.org/10.1016/j.ejpe.2022.05.002

Bendjama, M., Hamdaoui, O., Ferkous, H., & Alghyamah, A. (2022). Degradation of safranin O in water by UV/TiO2/IO4- process: Effect of operating conditions and mineralization. Catalysts. Vol. 12(11). 1460. doi.org/10.3390/catal12111460

Jadhav, G.K.P., Malusare, O.S.A., Ahiwale, R.K.P., Patil, P., Grouli, A., Berrada, M., & Pandit, V.R.U. (2022). Safranin dye degradation by using Fe2O3-SnO2 nanocomposites under natural sunlight. Biopolymer Applications Journal. Vol. 1. No. 2. P. 19—23.

Ikhlaq, A., Anwar, H.Z., Javed, F., & Gull, S. (2019). Degradation of safranin by heterogeneous Fenton processes using peanut shell ash based catalyst. Water Science & Technology. Vol. 79(7). P. 1367—1375. doi.org/10.2166/wst.2019.132

Guo, S., Zhang, L., Chen, M., Ahmad, F., Fida, H., & Zhang H. (2022). Heterogeneous activation of peroxymonosulfate by a spinel CoAl2O4 catalyst for the degradation of organic pollutants. Catalysts. Vol. 12(8). 847. doi.org/10.3390/catal12080847

Dharini, M., Jaspin, S., & Mahendran, R. (2023). Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chemistry. Vol. 405. Part A. 134746. doi.org/10.1016/j.foodchem.2022.134746

Guo, S., Wang, H., Yang, W., Fida, H., You, L., & Zhou, K. (2020). Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Applied Catalysis B: Environmental. Vol. 262. 118250. doi.org/10.1016/j.apcatb.2019.118250

Xie, H., & Xu, V. (2019). Enhanced activation of persulfate by meso-CoFe2O4/SiO2 with ultrasonic treatment for degradation of chlorpyrifos. ACS Omega. 2019. Vol. 4(17). P. 17177—17185. doi.org/10.1021/acsomega.9b01626

Guo, Z., Wang, X., Yang, F., & Liu, Z. (2022). Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance. Journal of Alloys and Compounds. Vol. 895. Part 2. 162614. doi.org/10.1016/j.jallcom.2021.162614

Li, J., Shi, Q., Zhao, R., Liu, Y., Liu, P., & Liu, L. (2023). Facile synthesis of CoMn2O4 spinel catalyst as peroxymonosulfate activator for efficient rhodamine B degradation. Materials Letters. Vol. 351. 135108. doi.org/10.1016/j.matlet.2023.135108

Liu, F., Li, W., Wu, D., Tian, T., Wu, J.-F., Dong, Z.-M., & Zhao, G.-C. (2020). New in-sight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: A singlet oxygen-dominated oxidation process. Journal of Colloid and Interface Science. Vol. 572. P. 318—327. doi.org/10.1016/j.jcis.2020.03.116

Wang, B., Li, Q., Lv, Y., Fu, H., Liu, D., Feng, Y., Xie, H., & Qu, H. (2021). Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chemical Engineering Journal. Vol. 416. 129162. doi.org/10.1016/j.cej.2021.129162

Zheng, H., Zhang, Y., Lu, M., Xie, H., Ye, J., Wang, H., Yang, M., & Li, G. (2024). Zero-valent iron-loaded Ti3C2-MXene activated by persulfate for the degradation of tetracycline hydrochloride: Efficiency and mechanism. Journal of Environmental Chemical Engineering. Vol. 12. No. 4. 113265. doi.org/10.1016/j.jece.2024.113265

Chen, X., Hu, C., Hong, F., Fang, Y., Yuan, X., Tian, H., & Huang, Y. (2024). Activation of persulfate with hydrodynamic cavitation in the removal of atrazine: Regulating the concentration of •OH and •SO4- and the degradation mechanism. Journal of Water Process Engineering. Vol. 65. 105828. doi.org/10.1016/j.jwpe.2024.105828

Sukhatskiy, Y., Dmytrenko, T., Shepida, M., Sozanskyi, M., & Znak, Z. (2024). Degrada-tion of diazine dye safranin T using potassium persulfate activated by ultrasonic treatment and MnFe2O4 spinel nanoparticles. Voprosy khimii i khimicheskoi tekhnologii. No. 1(152). P. 99—108. doi.org/10.32434/0321-4095-2024-152-1-99-108

Shao, Z., Xiang, K., Liu, S., Hong, F., Gao, Y., Lei, E., Jia, J., & Huang, Y. (2024). Unveiling the roles of turbulence characteristics on the degradation of methylene blue by the activation of H2O2 through vortex-based hydrodynamic cavitation under neutral condition. Journal of Environmental Chemical Engineering. Vol. 12. No. 5. 113916. doi.org/10.1016/j.jece.2024.113916

Pourzamani, H., Jafari, E., Rozveh, M.S., Mohammadi, H., Rostami, M., & Mengelizadeh, N. (2019). Degradation of ciprofloxacin in aqueous solution by activating the peroxymonosulfate using graphene based on CoFe2O4. Desalination and Water Treatment. Vol. 167. P. 156—169. doi.org/10.5004/dwt.2019.24593

Shu, Y., Zhang, P., Zhong, Y., Xu, X., Ren, G., Wang, W., Xiang, H., Zhang, Z., Yang, X., & Wang, X. (2020). Heterogeneous activation of persulfate by ZnCoxFe2-xO4 loaded on rice hull carbon for degrading bisphenol A. RSC Advances. Vol. 10. 44551. doi.org/10.1039/d0ra08852h

Xu, J., Cheng, H., Zhang, H., Sun, C., Tian, H., Yang, J., Ding, Y., Lin, X., Wang, P., & Huang, C. (2024). Visible light irradiation enhanced sulfidated zero-valent iron/peroxymonosulfate process for organic pollutant degradation. Environmental Research. Vol. 257. 119292. doi.org/10.1016/j.envres.2024.119292

##submission.downloads##

Опубліковано

2024-12-24

Номер

Розділ

Хімічні технології та інженерія