ВПЛИВ НУТРІЄНТІВ ТА ПРЕБІОТИКУ ЛАКТУЛОЗИ НА ПЕРЕБІГ БРОДИЛЬНИХ ПРОЦЕСІВ В ТЕХНОЛОГІЇ ОТРИМАННЯ ФУНКЦІОНАЛЬНОГО ПРОДУКТУ ХАРЧУВАННЯ З ПІДВИЩЕНИМ ТИТРОМ ЖИТТЄЗДАТНИХ КЛІТИН МОЛОЧНОКИСЛИХ БАКТЕРІЙ
DOI:
https://doi.org/10.31319/2519-2884.43.2023.21Ключові слова:
пребіотик лактулоза, молочнокислі бактерії, вітаміни, титр клітин, редокс-потенціал, окисний стресАнотація
Досліджено вплив нутрієнтів (жирозчинних вітамінів омега-3 жирних кислот та вітаміну D, також, водорозчинного вітаміну С), пребіотику лактулози на якість ферментованого продукту харчування, який оцінено за фізико-хімічними та мікробіологічними показниками: концентрація водневих іонів, окисно-відновлювальний потенціал, титрована кислотність дослідних зразків (1—10) із визначенням концентрації молочної кислоти, а також, титр життєздатних клітин молочнокислих бактерій задля подальшого використання отриманих результатів досліджень в біотехнології виробництва функціональних продуктів харчування зі скороченим часом ферментації та високої біологічної цінності.
Експериментами доведено доцільність використання нутрієнтів та лактулози, що підтверджено збільшенням титру МКБ, як на початку ферментації, так і протягом тривалого часу зберігання продукту (протягом 288 годин в умовах холодильника) не нижче ніж
1,2×108 кл/мл.
Посилання
Patel, S. The current trends and future perspectives of prebiotics research: a review/S. Patel, A. Goyal// 3 Biotech., 2012. 2(2). P.115–125.
Crowe, K. M., Francis, C. Position of the academy of nutrition and dietetics: functional foods /K. M. Crowe, C. Francis // Journal of the Academy of Nutrition and Dietetics, 2013. 113(8). P.1096–1103.
European Commission. Functional foods. http://publications.europa.eu/resource/cellar/238407ee-0301-4309-9fac e180e33a3f89.0001.02/DOC_1
Platkin, C., Cather, A., Butz, L., Garcia, I., Gallanter, M., Leung, MM. Food As Medicine: Overview and Report: How Food and Diet Impact the Treatment of Disease and Disease Management. 2022 https://www.nycfoodpolicy.org/wp-content/uploads/2022/04/foodasmedicine.pdf
Martirosyan, D., von Brugger, J., Bialow, S. Functional food science: Differences and similarities with food science /D. Martirosyan, J. von Brugger, S. Bialow// Functional Foods in Health and Disease, 2021. 11(9). P. 408–430.
Hill, C., Guarner, F., Reid, G. [et al.]. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic /C. Hill, F. Guarner, G. Reid et al. // Nat Rev Gastroenterol Hepatol, 2014. 11. P. 506–514.
Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food. https://www.iqb.es/digestivo/pdfs/probioticos.pdf
Probiotics in food: health and nutritional properties and guidelines for evaluation: report of a Joint FAO/WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. https://catalogue.nla.gov.au/Record/3788914
Bazzoli, F. [et al.]. In vivo Helicobacter pylori clearance failure with Lactobacillus acidophilus /F. Bazzoli et al. // Gastroenterology, 1992. 102. P. 38.
Aiba, Y. [et al.]. Lactic acid-mediated suppression of Helicobacter pylori by the oral administra-tion of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model/Y. Aiba et al. // The American journal of gastroenterology, 1998. 93 (11). P. 2097–2101.
Martin, F. [et al.]. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt/F. Matrin et al. Journal of Dairy Science, 2011. 94. P.614–622.
Citta, A. [et al.]. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life /A Citta et al. // Food Science & Nutrition, 2017. 5 (6). P. 1079–1087.
Lindmark‐Månsson, H., Akesson, B. Antioxidative factors in milk /H. Lindmark- Månsson, B. Akesson // British Journal of Nutrition, 2000. 84. P. 103–110.
Power, O., Jakeman, P., Fitzgerald, R. J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk‐derived antioxidative peptides / O. Power, P. Jakeman, R.J. Fitzgerald //Amino Acids, 2013. 44. P. 797–820.
O'Connell, J. E., Fox, P. F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review /J.E. O’Connell, P.F.Fox// International Dairy, 2001. 2. P. 614–622.
Varmanen, P., Savijoki, K. Responses of lactic acid bacteria to heat stress /P. Varmanen, K. Savijoki // Stress Responses of Lactic Acid Bacteria, 2011. P. 55–66.
Papadimitriou, K. [et al.]. Stress physiology of lactic acid bacteria /K. Papadimitriou et al.// Mi-crobiology and molecular biology reviews, 2016. 80 (3). P. 837–890.
Özer, D., Akin, S., Özer, B. Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in Acidophilus-Bifidus Yoghurt /D. Özer, S. Akin, B. Özer // Food Science and Technology International, 2005. 11(1). P. 22–23.
Guowei, S. Effect of prebiotics on growth of Bifidobacterium bifidum/ S. Guowei // Proceedings International Conference on Human Health and Biomedical Engineering, Jilin, China, 2011. P. 981-984.
Adebola, O.O., Corcoran, O., Morgan, W.A. Synbiotics: The Impact of Potential Prebiotics Inulin, Lactulose and Lactobionic Acid on the Survival and Growth of Lactobacilli Probiotics /O.O. Adebola, O. Corcoran, W.A. Morgan // J. Funct. Foods, 2014. 10. P. 75–84.
De Souza Oliveira, [et al.]. Use of Lactulose as Prebiotic and Its Influence on the Growth, Acidification Profile and Viable Counts of Different Probiotics in Fermented Skim Milk / De Souza Oliveira, [et al.] // Int. J. Food Microbiol, 2011. 145. P. 22–27.
Pham, T.T., Shah, N.P. Effects of Lactulose Supplementation on the Growth of Bifidobacteria and Biotransformation of Isoflavone Glycosides to Isoflavone Aglycones in Soymilk /T.T. Pham, N.P. Shan // J. Agric. Food Chem, 2008. 56. P. 4703–4709.
Figueroa-González, I. [et al.]. Prebiotic Effect of Commercial Saccharides on Probiotic Bacteria Isolated from Commercial Products /I. Figueroa-González et al. Food Sci. Technol, 2019. 39. P. 747–753.
Delgado-Fernández, P. [et al.]. Effect of Selected Prebiotics on the Growth of Lactic Acid Bacteria and Physicochemical Properties of Yoghurts /P. Delgado-Fernández [et al.] //Int. Dairy J, 2019. 89. P. 77–85.
Nobakhti, A.R. [et al.]. Influence of Lactulose and Hi-Maize Addition on Viability of Probiotic Microorganisms in Freshly Made Synbiotic Fermented Milk Drink /A.R. Nobakhti // Milchwis-senschaft, 2009. 64. P. 191–193.
Cardelle-Cobas, A. [et al]. Galactooligosaccharides Derived from Lactose and Lactulose: Influ-ence of Structure on Lactobacillus, Streptococcus and Bifidobacterium Growth /A. Cardelle-Cobas // Int. J. Food Microbiol, 2011. 149. P. 81–87.
Abraham, S. [et al.]. A procedure for reproducible measurement of redox potential (Eh) in dairy processes/S. Abraham// Dairy Science & Technology, 2013. 93(6). P. 675–690.
Caldeo, V., McSweeney, P. L. Changes in oxidation-reduction potential during the simulated manufacture of different cheese varieties/V. Caldeo, P.L. McSweeney// International Dairy Jour-nal, 2012. 25(1). P. 16–20.
Sheu, W.H., Lee, W.H., Chen, I-T. W. Effects of xylooligosaccharides in type 2 diabets mellitus / W.H. Sheu, W.H. Lee, I-T. W. Chen // Journal of Nutritional Science and Vitaminology, 2008. 54(5). P. 396–¬401.
Patel, S., Goyal, A. (2012). The current trends and future perspectives of prebiotics research: a review. 3 Biotech. 2(2). P.115–125.
Crowe, K. M., Francis, C. (2013). Position of the academy of nutrition and dietetics: functional foods. Journal of the Academy of Nutrition and Dietetics. 113(8). P.1096-1103.
European Commission. Functional foods. http://publications.europa.eu/resource/cellar/238407ee-0301-4309-9fac e180e33a3f89.0001.02/DOC_1
Platkin, C., Cather, A., Butz, L., Garcia, I., Gallanter, M., Leung, MM. (2022). Food As Medicine: Overview and Report: How Food and Diet Impact the Treatment of Disease and Disease Manage-ment. https://www.nycfoodpolicy.org/wp-content/uploads/2022/04/foodasmedicine.pdf
Martirosyan, D., von Brugger, J., Bialow, S. (2021). Functional food science: Differences and similarities with food science. Functional Foods in Health and Disease. 11(9). P. 408-430.
Hill, C., Guarner, F., Reid, G. et al. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11. P. 506–514.
Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food. https://www.iqb.es/digestivo/pdfs/probioticos.pdf
Probiotics in food: health and nutritional properties and guidelines for evaluation: report of a Joint FAO/WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. https://catalogue.nla.gov.au/Record/3788914
Bazzoli, F. [et al.] (1992). In vivo Helicobacter pylori clearance failure with Lactobacillus acidophilus. Gastroenterology. 102. P. 38.
Aiba, Y. [et al.] (1998). Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. The American journal of gastroenterology. 93 (11). P. 2097–2101.
Martin, F. [et al.] (2011). Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. Journal of Dairy Science. 94. P.614–622.
Citta, A. [et al.] (2017). Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Science & Nutrition. 5 (6). P. 1079–1087.
Lindmark‐Månsson, H., Akesson, B. (2000). Antioxidative factors in milk. British Journal of Nutrition. 84. P. 103–110.
Power, O., Jakeman, P., Fitzgerald, R. J. (2013). Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk‐derived antioxidative peptides. Amino Acids. 44. P. 797–820.
O'Connell, J. E., Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. International Dairy. 2. P. 614–622.
Varmanen, P., Savijoki, K. (2011). Responses of lactic acid bacteria to heat stress. Stress Responses of Lactic Acid Bacteria. P. 55–66.
Papadimitriou, K. [et al.] (2016). Stress physiology of lactic acid bacteria. Microbiology and mole-cular biology reviews. 80 (3). P. 837–890.
Özer, D., Akin, S., Özer, B. (2005). Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in Acidophilus-Bifidus Yoghurt. Food Science and Technology International. 11(1). P. 22–23.
Guowei, S. (2011). Effect of prebiotics on growth of Bifidobacterium bifidum. Proceedings Inter-national Conference on Human Health and Biomedical Engineering, Jilin, China. P. 981–984.
Adebola, O.O., Corcoran, O., Morgan, W.A. (2014). Synbiotics: The Impact of Potential Prebiotics Inulin, Lactulose and Lactobionic Acid on the Survival and Growth of Lactobacilli Probiotics. J. Funct. Foods. 10. P. 75–84.
De Souza Oliveira [et al.]. (2011). Use of Lactulose as Prebiotic and Its Influence on the Growth, Acidification Profile and Viable Counts of Different Probiotics in Fermented Skim Milk. Int. J. Food Microbiol. 145. P. 22–27.
Pham, T.T., Shah, N.P. (2008). Effects of Lactulose Supplementation on the Growth of Bifidobacteria and Biotransformation of Isoflavone Glycosides to Isoflavone Aglycones in Soymilk. J. Agric. Food Chem. 56. P. 4703–4709.
Figueroa-González, I. [et al.]. (2019). Prebiotic Effect of Commercial Saccharides on Probiotic Bacteria Isolated from Commercial Products. Food Sci. Technol. 39. P. 747–753.
Delgado-Fernández, P. [et al.]. (2019). Effect of Selected Prebiotics on the Growth of Lactic Acid Bacteria and Physicochemical Properties of Yoghurts. Int. Dairy J. 89. P. 77–85.
Nobakhti, A.R., [et al.]. (2009). Influence of Lactulose and Hi-Maize Addition on Viability of Probiotic Microorganisms in Freshly Made Synbiotic Fermented Milk Drink. Milchwissenschaft. 64. P. 191–193.
Cardelle-Cobas, A. [et al.]. (2011). Galactooligosaccharides Derived from Lactose and Lactulose: Influence of Structure on Lactobacillus, Streptococcus and Bifidobacterium Growth. Int. J. Food Microbiol. 149. P. 81–87.
Abraham, S. [et al.] (2013). A procedure for reproducible measurement of redox potential (Eh) in dairy processes. Dairy Science & Technology. 93(6). P. 675–690.
Caldeo, V., McSweeney, P. L. (2012). Changes in oxidation-reduction potential during the simu-lated manufacture of different cheese varieties. International Dairy Journal. 25(1). P. 16–20.
Sheu, W.H., Lee, W.H., Chen, I-T. W. (2008). Effects of xylooligosaccharides in type 2 diabets mellitus. Journal of Nutritional Science and Vitaminology. 54(5). P. 396–401.