ВПЛИВ ІНДОЛІЛМАСЛЯНОЇ КИСЛОТИ НА РЕГЕНЕРАЦІЮ ГІБРИДІВ КУКУРУДЗИ В КУЛЬТУРІ IN VITRO

Автор(и)

  • К.В. Денисюк Державна установа Інститут зернових культур НААН, м. Дніпро, Ukraine
  • Т.М. Сатарова Державна установа Інститут зернових культур НААН, м. Дніпро, Ukraine

DOI:

https://doi.org/10.31319/2519-2884.41.2022.16

Ключові слова:

Zea mays L., калусна тканина, in vitro, фітогормони, біотехнологія рослин

Анотація

Підвищення регенераційного потенціалу в культурі in vitro кукурудзи є актуальним завданням біотехнологічного забезпечення селекційного процесу. Метою дослідження була характеристика впливу фітогормону ауксинового ряду індолілмасляної кислоти (ІМК) на здатність до регенерації in vitro гібридів цієї культури. В результаті проведеного дослідження встановлено, що ІМК у концентрації 0,1 мг/л позитивно впливає на регенерацію рослин з калусної тканини ІІ типу гібридів сучасних вітчизняних ліній і класичних ліній з високою регенераційною здатністью. Доведено суттєвий вплив генотипу калусної тканини досліджених гібридів на її регенераційну здатність на фоні різних концентрацій ІМК.

Посилання

Ma L. Genetic dissection of maize embryonic callus regenerative capacity using multi-locus genome-wide association studies / L. Ma, M. Liu, Y. Yan [et al.] // Front Plant Sci. 2018. Vol. 9. P. 1–15. https://doi.org/10.3389/fpls.2018.00561.

Salvo S. Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (Zea mays L.) / S. Salvo, J. Cook, A. R. Carlson [et al.] // Plant Genome. 2018. Vol. 11. P. 1–11. https://doi.org/10.3835/plantgenome2017.12.0111.

Muppala S. Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation / S. Muppala, P. K. Gudlavalleti, K. R. Malireddy [et al.] // J. Genet. Eng. Biotechnol. 2021. Vol. 19. P. 96. doi: 10.1186/s43141-021-00195-2.

López-Ruiz B. A. MicroRNA expression and regulation during maize somatic embryogenesis / B. A. López-Ruiz, V. T. Juárez-González, E. C. Chávez-Hernández, T. D. Dinkova // Methods Mol.Biol. 2018. Vol. 1815. P. 397–410. https://doi.org/10.1007/978-1-4939-8594-4_28.

Oduor R.O. In vitro regeneration of dry land Kenyan maize genotypes through somatic embryogenesis / R. O. Oduor, E. N. M. Njagi, J. S. Machuka // International journal of botany. 2006. Vol. 2 (2). P. 146–151. https://dx.doi.org/10.3923/ijb.2006.146.151.

Ombori O. Somatic embryogenesis and plant regeneration from immature embryos of tropical maize (Zea mays L.) inbreds line / O. Ombori, N. M. Gitonga, J. Machuka // Biotechnology. 2008. Vol. 7 (2). P. 224–232. http://ir-library.ku.ac.ke/handle/123456789/18176.

Jia X. X. Efficient maize (Zea mays L.) regeneration derived from mature embryos in vitro / X. X. Jia, J. W. Zhang, H. N. Wang, W. P. Kong // Maydica. 2008. Vol. 53. P. 239–248.

Danson J. W. Screening tropical maize lines for the production and regeneration of friable and embryogenic type II callus / J. W. Danson, M. Lagat, M. Mbogori // African journal of biotechnology. 2006. Vol. 5. Р. 2367–2370. http://hdl.handle.net/10883/3033.

Rakshit S. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds / S. Rakshit, Z. Rashid, J. C. Sekhar [et al.] // Plant cell organ culture. 2010. Vol. 100. Р. 31–37. https://doi.org/10.1007/s11240-009-9613-z.

Malini N. Regeneration of Indian maize genotypes (Zea mays L.) from immature embryo culture through callus induction / N. Malini, C. R. Ananadakumar, S. Hariramakrishnan // Journal of Applied and Natural Science. 2015. Vol. 7, N 1. P. 131–137. https://journals.ansfoundation.org/index.php/jans/article/view/576/534.

Guruprasad M., Sridevi T.V., Vijayakumari G., Kumar M.S. Plant regeneration through callus initiation from mature and immature embryos of maize (Zea mays L.). Indian journal Agricultural Research. 2016. Vol. 50, No 2. P. 135–138. doi: 10.18805/ijare.v0iOF.8435.

Mushke R. Efficient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea maysL.) / R. Mushke, R. Yarra, M. Bulle // Journal Genetic Engineering & Biotechnology. 2016. Vol. 14, N 1. P. 49–53. https://doi.org/10.1016/j.jgeb.2016.03.001.

Zhong H. In vitro morphogenesis of corn (Zea mays L.): I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips / H. Zhong, C. Srinivasan, M. B. Sticklen // Planta. 1992. Vol. 187, N 4. P. 483–489. doi: 10.1007/BF00199966.

Pathi K. M. An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.) / K. M. Pathi, S. Tula, K. M. Huda [et al.] // Plant Signal Behav. 2013. Vol. 8, N 10. P. 1–6. https://doi.org/10.4161/psb.25891.

Green C. E., Phillips H. L. Plant regeneration from tissues cultures of maize. Crop Science. 1975. Vol. 15 (5). P. 417–421.

Derkach K. V. Morphogenesis in vitro in maize inbred lines from the Lancaster heterotic group / K. V. Derkach, O. E. Abraimova, T. M. Satarova // Cytol. Genet. 2017. Vol. 51. Р. 48–53. https://doi.org/10.3103/S0095452717010030.

Luján-Soto E. MicroRNA Zma-miR528 versatile regulation on target mRNAs during maize somatic embryogenesis / E. Luján-Soto, V. T. Juárez-González, J. L. Reyes, T. D. Dinkova // Int. J. Mol. Sci. 2021. Vol. 22, N 10. P. 5310. doi: 10.3390/ijms22105310.

Luo P. MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling / P. Luo, D. Di, L. Wu [et al.] // Int. J. Mol. Sci. 2022. Vol. 23, N 1. P. 510. doi: 10.3390/ijms23010510.

Hnatuszko-Konka K. Cytokinin signaling and de novo shoot organogenesis / K. Hnatuszko-Konka, A. Gerszberg, I. Weremczuk-Jeżyna, I. Grzegorczyk-Karolak // Genes. 2021. Vol. 12, N 2. P. 265. https://doi.org/10.3390/genes12020265.

Juarez-Escobar J. Current proteomic and metabolomic knowledge of zygotic and somatic embryogenesis in plants / J. Juarez-Escobar, E. Bojórquez-Velázquez, J. M. Elizalde-Contreras [et al.] // Int. J. Mol. Sci. 2021. Vol. 22, N 21. P. 11807. doi: 10.3390/ijms222111807.

Абраімова О. Є. Біотехнологічна характеристика калусогенезу в культурі незрілих зародків кукурудзи під впливом абсцизової кислоти та 6-бензиламінопурину / О. Є. Абраімова, Г. Р. Піралов, Т. М. Сатарова // Вісник Дніпропетровського національного університету. Серія Біологія. Медицина. 2010. № 18 (1). С. 3–8. https://www.dnu.dp.ua/docs/visnik/fbem/program_5e5927c37541e.pdf.

Нітовська І. О. Біолістична трансформація незрілих зародків кукурудзи / І. О. Нітовсь-ка, О. Є. Абраімова, Т. М. Сатарова та ін. // Фактори експериментальної еволюції організмів. 2014. Т. 15. С. 112–117. https://www.researchgate.net/publication/331630268_Biolisticna_transformacia_nezrilih_zarodkiv_kukurudzi_Biolistic_transformation_of_immature_maize_embryos.

Chu C. C. Establishment of an efficient medium for anther culture of rice through comparative experiments on nitrogen sources / C. C. Chu, C. C. Wang, C. S. Sun [et al.] // Sci. Sinica. 1975. Vol. 18. P. 659–668. https://www.scienceopen.com/document?vid=7e4d50a5-ee4a-452e-9b74-e2bbe2d47fb4.

Murashige T. A revised media for rapid growth and bioassay with tobacco tissue culture / T. Murashige, F. Skoog // Physiol. Plant. 1962. Vol. 15. P. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Welham S. J. Statistical methods in biology: design and analysis of experiments and regression / S. J. Welham, S. A. Gezan, S. J. Clark, A. Mead BocaRaton: CRCPress, 2015. 608 p. ISBN-13: 978-1439808788.

Manivannan A. Callus induction and regeneration of elite Indian maize inbreds / A. Manivannan, J. Kaul, A. Singode, S. Dass // African Journal of Biotechnology. 2010. Vol. 9(44). P. 7446–7452. https://doi.org/10.5897/AJB10.500.

Muoma J. Improvement in inheritance of somatic embryogenesis and plantlet regeneration in tropical maize lines from friable callus / J. Muoma, O. Ombori, J. Machuka // Maize Genet. Coop. News Lett. 2011. Vol. 85. P. 1–2. https://mnl.maizegdb.org/85/PDF/32muoma.pdf.

Seth M. S. In vitro regeneration of selected commercial Tanzanian open pollinated maize varieties / Seth M.S., Bedada L.T., Mneney E.E [ et al.] // Afr. J. Biotechnol. 2012. Vol. 11,No 22. P. 6043–6049.

Shou H.X., Bordallo P., Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot. 2004. Vol. 55,No 399. P. 1013–1019. https://doi.org/10.1093/jxb/erh129.

Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., et. al. (2018). Genetic dissection of maize embryonic callus regenerative capacity using multi-locus genome-wide association studies. Front Plant Sci., 9, 1–15. https://doi.org/10.3389/fpls.2018.00561.

Salvo, S., Cook, J., Carlson, A., Hirsch, C., Kaeppler, S., & Kaeppler, H. (2018). Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (Zea mays L.). Plant Genome, 11, 1–11. https://doi.org/10.3835/plantgenome2017.12.0111.

Muppala, S., Gudlavalleti, P., Malireddy, K., Puligundla, S., & Dasari, P. (2021). Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation. J. Genet. Eng. Biotechnol., 19, 96. doi: 10.1186/s43141-021-00195-2.

López-Ruiz, B., Juárez-González, V., Chávez-Hernández, E., & Dinkova, T. (2018). MicroRNA expression and regulation during maize somatic embryogenesis. Methods Mol.Biol., 1815, 397–410. https://doi.org/10.1007/978-1-4939-8594-4_28.

Oduor, R.O., Njagi, E.N.M., & Machuka, J.S. (2006). In vitro regeneration of dry land Kenyan maize genotypes through somatic embryogenesis. International journal of botany, 2 (2), 146–151. https://dx.doi.org/10.3923/ijb.2006.146.151.

Ombori, O., Gitonga, N.M., & Machuka J. (2008). Somatic embryogenesis and plant regeneration from immature embryos of tropical maize (Zea mays L.) inbreds line. Biotechnology, 7 (2), 224–232. http://ir-library.ku.ac.ke/handle/123456789/18176.

Jia, X.X., Zhang, J.W., Wang, H.N., & Kong, W.P. (2008). Efficient maize (Zea mays L.) regeneration derived from mature embryos in vitro. Maydica, 53, 239–248.

Danson, J.W., Lagat, M., & Mbogori, M. (2006). Screening tropical maize lines for the production and regeneration of friable and embryogenic type II callus. African journal of biotechnology, 5, 2367–2370. http://hdl.handle.net/10883/3033.

Rakshit, S., Rashid, Z., Sekhar, J., Fatma, T., & Dass, S. (2010). Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant cell organ culture, 100, 31–37. https://doi.org/10.1007/s11240-009-9613-z.

Malini, N., Ananadakumar, C.R., & Hariramakrishnan, S. (2015). Regeneration of Indian maize genotypes (Zea mays L.) from immature embryo culture through callus induction. Journal of Applied and Natural Science, 7 (1), 131–137. https://journals.ansfoundation.org/index.php/jans/ article/view/576/534.

Guruprasad, M., Sridevi, T.V., Vijayakumari, G., & Kumar, M.S. (2016). Plant regeneration through callus initiation from mature and immature embryos of maize (Zea mays L.). Indian journal Agricultural Research, 50 (2), 135–138. doi: 10.18805/ijare.v0iOF.8435.

Mushke, R., Yarra, R., & Bulle, M. (2016). Efficient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea maysL.). Journal Genetic Engineering & Biotechnology, 14 (1), 49–53. https://doi.org/10.1016/j.jgeb.2016.03.001.

Zhong, H., Srinivasan, C., & Sticklen, M.B. (1992). In vitro morphogenesis of corn (Zea mays L.): I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta, 187 (4), 483–489. doi: 10.1007/BF00199966.

Pathi, K.M., Tula, S., Huda, K., Srivastava, V., & Tuteja, N. (2013). An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signal Behav., 8 (10), 1–6. https://doi.org/10.4161/psb.25891.

Green, C.E., & Phillips, H.L. (1975). Plant regeneration from tissues cultures of maize. Crop Science, 15 (5), P. 417–421.

Derkach, K.V., Abraimova, O.E., & Satarova, T.M. (2017). Morphogenesis in vitro in maize inbred lines from the Lancaster heterotic group. Cytol. Genet., 51, 48–53. https://doi.org/10.3103/S0095452717010030.

Luján-Soto, E., Juárez-González, V.T., Reyes, J.L., & Dinkova, T.D. (2021). MicroRNA Zma-miR528 versatile regulation on target mRNAs during maize somatic embryogenesis. Int. J. Mol. Sci., 22 (10), 5310. doi: 10.3390/ijms22105310.

Luo, P., Di, D., Wu, L., Yang, J., Lu, Y., & Shi, W. (2022). MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. Int. J. Mol. Sci., 23 (1), 510. doi: 10.3390/ijms23010510.

Hnatuszko-Konka, K., Gerszberg, A., Weremczuk-Jeżyna, I., & Grzegorczyk-Karolak, I. (2021). Cytokinin signaling and de novo shoot organogenesis. Genes., 12 (2), 265. https://doi.org/10.3390/genes12020265.

Juarez-Escobar, J., Bojórquez-Velázquez, E., Elizalde-Contreras, J., Guerrero-Analco, J., Loyola-Vargas, V., Mata-Rosas, M. et al. (2021). Current proteomic and metabolomic knowledge of zygotic and somatic embryogenesis in plants. Int. J. Mol. Sci., 22 (21), 11807. doi: 10.3390/ijms222111807.

Abraimova, O.E., Piralov, G.R., & Satarova, T.M. (2010). Bіotehnologіchna harakteristika kalusogenezu v kul'turі nezrіlih zarodkіv kukurudzi pіd vplivom abscizovoї kisloti ta 6-benzilamіnopurinu [Biotechnological characteristics of callusogenesis in maize immature embryo culture under the influence of abscisic acid and 6-benzylaminopurine]. Visnyk of Dnipropetrovsk University. Biology. Medicine – Vіsnik Dnіpropetrovs'kogo nacіonal'nogo unіversitetu. Serіja Bіologіja. Medicina, 18 (1), 3-8 [in Ukrainian]. https://www.dnu.dp.ua/docs/visnik/fbem/program_5e5927c37541e.pdf.

Nitovska, I.O., Abraimova, O.E., Satarova, T.M., Shahovskyi, A.M., & Morgun, B.V. (2014). Bіolіstichna transformacіja nezrіlih zarodkіv kukurudzi [Biolistic transformation of immature maize embryos]. Faktori eksperimental'noї evoljucії organіzmіv - Factors in experimental evolution of organisms, 15, 112-117 [in Ukrainian]. https://www.researchgate.net/publication/331630268_Biolisticna_transformacia_nezrilih_zarodkiv_kukurudzi_Biolistic_transformation_of_immature_maize_embryos.

23. Chu, C.C., Wang, C.C., Sun C.S., Hsu, C., Yin, K.C., Chu, C.Y., et. al. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on nitrogen sources. Sci. Sinica, 18, 659–668. https://www.scienceopen.com/document?vid=7e4d50a5-ee4a-452e-9b74-e2bbe2d47fb4.

24. Murashige, T., & Skoog, F. (1962). A revised media for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

25. Welham, S.J., Gezan, S.A., Clark, S.J., & Mead, A. (2015). Statistical methods in biology: design and analysis of experiments and regression. BocaRaton: CRCPress, 2015. ISBN-13: 978-1439808788.

26. Manivannan, A., Kaul, J., Singode, A., & Dass, S. (2010). Callus induction and regeneration of elite Indian maize inbreds. African Journal of Biotechnology, 9 (44), 7446–7452. https://doi.org/10.5897/AJB10.500.

27. Muoma, J., Ombori, O., & Machuka, J. (2011). Improvement in inheritance of somatic embryogenesis and plantlet regeneration in tropical maize lines from friable callus. Maize Genet. Coop. News Lett., 85, 1–2. https://mnl.maizegdb.org/85/PDF/32muoma.pdf.

28. Seth, M.S., Bedada, L.T., Mneney, E.E., Oduor, R.O., & Machuka, J.S. (2012). In vitro regeneration of selected commercial Tanzanian open pollinated maize varieties. Afr. J. Biotechnol., 11 (22), 6043–6049. https://doi.org/10.5897/AJB11.2420.

Shou, H.X., Bordallo, P., & Wang, K. (2004). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot., 55 (399), 1013–1019. https://doi.org/10.1093/jxb/erh129.

##submission.downloads##

Опубліковано

2022-12-19

Номер

Розділ

Біотехнології та біоінженерія. Екологія